The Writing Process

- Work on global (big picture) issues first
 - conceptual or developmental level
 - content, organization
 - structure, logic
 - assumptions, evidence, arguments, relationships

- Work on local issues second
 - paragraph, sentence, word level
 - reconsider style, terminology
 - pay attention to mechanics: grammar, spelling

Observations (methods)

- Describe fully the parameters of the observations, simulations, or codes
 - Why did you choose the setup or sample?
 - Details matter here (seeing, calibrations, accuracy)
 - How were data reduced? Sky subtraction, nods, etc.
- Usually past tense
 - other parts of the paper usually present tense
- Be sure to provide appropriate citations and credit
 - Download data? Who took it? Has it been previously published?
 - Survey data? Describe the survey!
 - 2MASS, WISE, Gaia: all have citations!
 - Codes were written by someone
 - Instruments were built by some group of people
- Use subsections to split different data types
- Enough detail for paper to be repeatable

Results

- Function: objectively present key results in an orderly and logical sequence
 - Data-driven: usually without interpretation
 - Logic often organized around Tables and Figures
 - Make Tables and Figures first, build around them
- Style: concise and objective
 - Interpretation left for "analysis" section
- Usually few citations
- What are the key results? Highlight those
 - Be sure to describe negative results and assumptions

Results

- Key results: put up front
- Subsections: different results
 - Each subsection should focus on one topic
 - Roughly 3-6 paragraphs/subsection
- Be quantitative
 - "Galaxy A is more massive than Galaxy B" is not very informative
 - Galaxy A and Galaxy B have different masses is worse
 - General rule, but especially applicable for results
- Text describes figures and tables
 - Leave details of Figures (the red line shows...) for caption; scientific description for text
 - Remember that for key results, if they are controversial, then people will only believe them if they can see the results for themselves
 - People will believe boring results that conform to expectations
- Sometimes Results split into multiple sections

Analysis

- Results: data-heavy
- Discussion: broad interpretation and importance
- Analysis: connects results and discussion
- Broaden out from results
 - Physical interpretations?
 - Equations for interpretation?
 - Modeling observations (or observational predictions from models)
- Logical flow to arguments (as everywhere):
 - Conclusions at front
 - Each subsequent paragraph develops and demonstrates those conclusions
- Sections/subsection titles can tell a story

Discussion

- Place your results in context of other work
 - Do your findings agree with what others have shown?
 - If not, do they suggest an alternative explanation or perhaps a unforeseen design flaw in your experiment (or theirs?)
- Do your results provide answers to your testable hypotheses?
 - If so, how do you interpret your findings?
- Given your results+analysis, what is our new understanding of the problem you investigated and outlined in the Introduction?
 - If warranted, what would be the next step in your study, e.g., what experiments would you do next?
 - Connect back to Introduction (perhaps including rewrite of intro)
 - Why is this important?
- Some speculation is ok (sensationalism is not ok)
 - Always identify "speculation" as such: preferred interpretations that are consistent with data
 - Always identify assumptions and caveats clearly

Conclusions

- Summarize main points
 - Include most important caveats
 - Never add new results or ideas
- Some reminder of comparisons to previous works
- Some readers will skip to the conclusions, so make sure that:
 - detailed enough to communicate information (more than abstract)
 - Interesting enough to draw the reader to important points
 - Highlight new ideas in paper and anything controversial
 - Ensures that the most important caveats also described

Appendix: for random topics that would otherwise break your focus

- Details of a source or a code
- Investigations that are tangential to main results
- Extras
 - Data
 - Plots
 - Tables
 - Formula and derivations

Section titles and sub-titles

 "Results", "Analysis", "Discussion" – no information

- Descriptive title sections
 - Invites readers in
 - Tells readers where information is located
 - Provides readers an obvious outline
- Parallel titles when possible

Document Design

- The layout of words and graphics determines the look of a document.
 - grid pattern, white space, etc.
 - margins, justification, indentation, spacing, font
 - headings, paragraph length, bullets, etc.
- Goal is to invite a diversity of readers in, guide them through the material, and help them understand and later remember the information.