Gravity and black holes

Big Bang: Cosmic Microwave Background

Universe was smooth at 1 part in 10,000

Cosmology in a single plot

Cosmological Future

Universe expansion is accelerating

Type 1a supernova: standard candles (always the same brightness)

Distance versus redshift allows us to see that expansion is **accelerating**

Cosmological Future

Big Rip (Big Chill/Heat Death): the far-future of the universe

If expansion continues to accelerate

-13.5 billion years: Big Bang -5 billion years: Sun formed 2 billion years: people better leave Earth 5 billion years: sun evolves off main sequence 4-8 billion years: Andromeda Galaxy, Milky Way merge 100-1,000 billion years: Local Group galaxies merge 150 billion years: galaxies beyond local subcluster will pass beyond cosmological horizon (no causal interactions) 800 billion years: stars burn out, little star formation; luminosities diminish 2 trillion years: galaxies outside local supercluster not detectable 1-100 trillion years: star formation ends 1e20 years: galaxies ripped apart; stars flung out or eaten by black holes 1e50 years: protons decay, normal matter no longer exists 1e70 years: black holes evaporate 1e100 years: supermassive black holes evaporate 1e1000 years to eternity: dark era, heat death

Big Bang: Cosmic Microwave Background

Universe was smooth at 1 part in 10,000

Measuring masses of large structures

Galaxy rotation curve: evidence for dark matter

Masses and dark matter: gravitational lensing

Gravitational lensing

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32

Black holes: gravity high enough (large mass, small volume) that light cannot escape

Black holes: gravity high enough (large mass, small volume) that light cannot escape

Black holes: event horizon defines radius where light can no longer escape

Figure 24.14 Light Paths near a Massive Object. Suppose a person could stand on the surface of a normal star with a flashlight. The light leaving the flashlight travels in a straight line no matter where the flashlight is pointed. Now consider what happens if the star collapses so that it is just a little larger than a black hole. All the light paths, except the one straight up, curve back to the surface. When the star shrinks inside the event horizon and becomes a black hole, even a beam directed straight up returns.

Types of black holes

- Supermassive black holes
 - Centers of galaxies
- Stellar mass black holes
 - Remnant of a dead stars

- Primordial black holes?
 - Speculative, no idea whether they exist
 - They would be tiny

Imaging: usually can't resolve the black hole

Indirect evidence: accretion disks, jets

Supermassive black holes Direct evidence

> Milky Way: galactic center

Supermassive black holes! Quasars: quasi-stellar objects

Quasars: accreting gas, outshines their host galaxies (but they do have host galaxies)

Jets from the central black hole

Hypervelocity stars: Thrown out of galaxy by close encounter with supermassive black hole

Tidal disruption events: sometimes black hole eats a star!

Event Horizon Telescope:

Uses radius of earth

spatial resolution = wavelength/diameter

Strange beast

The Event Horizon Telescope (EHT) team took 2 years to produce an image of the black hole at the center of nearby galaxy Messier 87 (M87), which feeds on a swirling disk of bright matter. Its gravity is so strong that photons orbit it, creating a bright ring. Gravitational lensing magnifies the black hole's event horizon into a larger dark shadow, which may be partially filled by material in front of the hole.

Event Horizon Telescope: image of M87 black hole

Event Horizon Telescope: image of Milky Way black hole

Properties of a Typical White Dwarf and a Neutron Star

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km	10 km
Density	$8 \times 10^5 \text{ g/cm}^3$	10 ¹⁴ g/cm ³

X-ray image of accreting neutron star

White dwarf

-C+O nuclei plus degenerate electrons T ~ 10⁶ degrees

> normal matter T ~ 10,000 degrees

Neutron star: density of nucleus!

• white dwarf: electrons run out of room and halt the collapse of the star

maximum mass 1.4 solar masses

> neutron star: neutrons run out of room and halt the collapse of the star

maximum mass ~3 solar masses

• black hole: gravity wins: collapse continues

Sun: size 1.4x10⁶ km rotation period 27 days = 2.3x10⁶ s Neutron star: size 14 km = 1 million times smaller ☞ rotation period 1 million times shorter = 2.3 s

Pulsar: neutron star with beamed light pulses from electrons

Jocelyn Bell: Found pulsars (discovery won Nobel Prize, but she did not)

Cygnus X-1: first accepted black hole

- Black holes in binary systems can "steal" mass from the companion
- Accretion disk: very hot
 - Strong X-rays
- Some X-ray binaries identified as stellar mass black holes

Figure 2. Radial velocities. Points with error bars are measurements; gray lines are draws from the posterior when jointly fitting these RVs and the *Gaia* astrometric constraints. Top panel shows all available RVs, including observations by the LAMOST survey in 2017 and 2019; bottom panel highlights our follow-up in 2022. The best-fit solution has a period of 186 days, eccentricity 0.45, and RV semi-amplitude of 67 km s⁻¹. Together with the inclination constraint from astrometry, this implies a companion mass of $9.62 \pm 0.18 M_{\odot}$.

Gaia BH1

First "quiet" stellar-mass black hole

Found by orbit of a star

Binary merger: gravitational waves

Hulse-Taylor binary pulsar

Orbital decay requires gravitational waves

How to detect gravitational waves: ripples in space time?

Gravitational wave detectors

Gravitational waves: distort space by 10^-19 m (smaller than proton)

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GE0600

VIRGO

KAGRA

LIGO India

First direct gravitational wave detection

- LIGO in 2015
- Merger of two 30 solar mass black holes
 - Surprising: did not know that black holes of that mass existed
 - Stellar remnant: failed supernova?

Gravitational wave detection

- About 90 events to date!
- Neutron star-neutron star merger:
 - optical and gamma ray counterparts help to understand the explosion, production of heavy elements

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

The Gravitational Wave Spectrum

Primordial black holes

- Quantum fluctuations soon after big bang
- Initial mass as low as 1e-8 kg
- Anything below 1e11 kg would have evaporated away
 - Hawking radiation: black holes evaporate
 - Relativistic+quantum effects: radiation released outside black hole
- Any measurements will help constrain cosmology

History of gravitational theories

- Copernicus: Earth orbits the sun
- Kepler's laws
 - 1st law: planetary orbits are ellipses
 - 2nd law: orbit sweeps out equal areas from sun in equal time
 - 3rd law: P² = a³ (period² = orbital distance³)

• Newton: connected planetary motion to gravity on Earth

$$F=Grac{m_1m_2}{r^2}$$

Special Relativity

• Laws of physics are invariant in all inertial frames of reference

• Speed of light in a vacuum is the same for all observers

Time Dilation and length contraction

 To an observer at rest, the time of something moving quickly will appear much longer than in the faster reference frame

• An object would be measured to be shorter in the inertial frame

• As an object's speed approaches the speed of light, the relativistic mass increases towards infinity

$$\Delta t' = rac{\Delta t}{\sqrt{1-rac{v^2}{c^2}}}$$

$$L=L_0\sqrt{1-v^2/c^2}$$

$$m_{
m rel} = rac{m}{\sqrt{1-rac{v^2}{c^2}}}$$

Implications of special relativity

- Information cannot travel faster than the speed of light
 - It would take infinite energy to accelerate any mass to the speed of light
- Mass-energy equivalence (E=mc^2)

- No absolute reference frame
 - Previous idea: aether in space is absolute state of rest

General relativity: geometric theory of gravity

- Curvature of spacetime is directly related to energy and momentum
- Specified by Einstein field equations

Elevator thought experiment:

No way to tell whether the ball is

(a) falling to a gravitational well

(b) Falling because the elevator is accelerating

Implications of general relativity

- Gravitational lensing
- Gravitational waves
- Black holes
- Everything!

 Newton's laws are limiting (non-relativistic) case of general relativity

Test of General Relativity

LIGHTS ALL ASKEW IN THE HEAVENS

Men of Science More or Less Agog Over Results of Eclipse Observations.

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be, but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

No More in All the World Could Comprehend It, Said Einstein When His Daring Publishers Accepted It.

Test in 1919 eclipse: precise measurement of Mercury's position

Gravitational Lens G2237+0305

Tests of general relativity

Gravitational lens

Bending of signal from Viking Mission

Gravity and black holes

- General relativity governs our universe
 - Every experiment has confirmed general relativity
- Gravity: best tested in extreme environments: black holes
- Black holes are common
 - Stellar mass black holes: stellar remnants
 - Centers of galaxies (primordial? Early formation from massive stars?)
 - Primordial black holes

Next week: our solar system!

