

Cosmology in a single plot

Galaxies and their supermassive black holes

Elliptical: red and dead No dust/gas, no star formation Spirals: Gas accumulates in spiral density waves; star formation

Mergers: starbursts Lots of young stars and dust, gas

Characteristics of the Different Types of Galaxies

Characteristic	Spirals	Ellipticals	Irregulars	
Mass (<i>M</i> _{Sun})	10 ⁹ to 10 ¹²	10 ⁵ to 10 ¹³	10 ⁸ to 10 ¹¹	
Diameter (thousands of light-years)	15 to 150	3 to >700	3 to 30	
Luminosity (L _{Sun})	10 ⁸ to 10 ¹¹	10 ⁶ to 10 ¹¹	10 ⁷ to 2 × 10 ⁹	
Populations of stars	Old and young	Old	Old and young	
Interstellar matter	Gas and dust	Almost no dust; little gas	Much gas; some have little dust, some much dust	
Mass-to-light ratio in the visible part	2 to 10	10 to 20	1 to 10	
Mass-to-light ratio for total galaxy	100	100	?	

Mass of black hole from velocity shifts

First "image" of a black hole Supermassive black hole of M87

The distance ladder! How to measure distances?

Some Methods for Estimating Distance to Galaxies

Method	Galaxy Type	Approximate Distance Range (millions of light-years)
Planetary nebulae	All	0-70
Cepheid variables	Spiral, irregulars	0–110
Tully-Fisher relation	Spiral	0–300
Type Ia supernovae	All	0–11,000
Redshifts (Hubble's law)	All	300-13,000

Nearby galaxies: use variable stars!

Hubble's Law: distance proportional to redshift Redshift: spectrum of light shifted to red (going away from us)

When we look at larger distances, we are looking into the past!

Expansion of universe and redshift

Redshift: 3D maps of a 2D sky

Searching for galaxies: redshift and wavelength

Redshift formula

- Redshift $z = \Delta \lambda / \lambda = v/c$ (if v<<c)
- $v=H_0d$, H_0 is Hubble constant
- D=z c/H₀
- Age of universe: $1/H_0$

Light travel time: distance ~ time

- Most distant: 13.5 billion light years
 - Current distance: ~50 billion light years (no longer visible)
- When we observe the most distant objects, we are observing the universe when it was young!

GALAXY CLUSTER SMACS 0723 WEBB SPECTRA IDENTIFY GALAXIES IN THE VERY EARLY UNIVERSE

NIRCam Imaging

NIRSpec Microshutter Array Spectroscopy

SPACE TELESCOPE

Highest redshift

Most distant astronomical objects with spectroscopic redshift determinations									
Image ÷	Name ÷	Redshift (z) ≎	Light travel distance [§] ≎ (Gly) ^{[4][5][6][7]}	Proper distance (Gly)	Type ÷	Notes ÷			
× I	JADES-GS-z14-0	$z = 14.32 + 0.08_{-0.20}$			Galaxy	Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. ^[8]			
	JADES-GS-z14-1	z = 13.90 + 0.17 = -0.17			Galaxy	Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. ^[9]			
c) JADES-GS-213-0 z=13.20	JADES-GS-z13-0	z = 13.20 + 0.04 - 0.07	13.576 ^[4] / 13.596 ^[5] / 13.474 ^[6] / 13.473 ^[7]	33.6	Galaxy	Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. ^[10]			
\$* 	UNCOVER-z13	z = 13.079 ^{+0.014} _0.001	13.51	32.56 [†]	Galaxy	Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. ^[11]			
	JADES-GS-z12-0	z = 12.63 + 0.24 - 0.08	13.556 ^[4] / 13.576 ^[5] / 13.454 ^[6] / 13.453 ^[7]	32.34 [†]	Galaxy	Lyman-break galaxy, detection of the Lyman break with JWST/NIRCam ^[10] and JWST/NIRSpec, ^[12] and CIII] line emission with JWST/NIRSpec. ^[12] Most distant spectroscopic redshift from emission lines; most distant detection of non- primordial elements (C, O, Ne).			
	UNCOVER-z12	z = 12.393 ^{+0.004} _{-0.001}	13.48	32.21 [†]	Galaxy	Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. ^[11]			

3D map of the universe: clusters and voids

Galaxies cluster together: Local Group

Virgo Cluster

How massive are galaxies?

- Rotation curves
- Gravitational lensing

Masses and dark matter: gravitational lensing

Gravitational lensing

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32

Bullet cluster: best evidence of dark matter? Mass and "normal matter"=baryons are spatially offset

1.5 '

X-ray image (pink) visible light image (galaxies) matter distribution calculated from gravitational lensing (blue)

What is the universe made of

- "normal" matter: 25% of total mass
- 75% of mass: dark matter
 - "cold" dark matter

But cosmology: dark (vacuum) energy is 75% of energy density of the universe

Size of the universe?

- Does the universe have a beginning? Or an edge in time?
- Or is the universe infinite?

Olbers Paradox

- Why is the sky dark at night?
- If the universe is
 - infinite in size
 - infinite in age
 - filled with stars
- then as we look out into a larger volume, number of stars increases. The entire sky would be as bright as a star

One of the assumptions must be wrong

Are we in a special place? If not, then universe is expanding everywhere!

Age of the universe

Big Bang!

- Exrapolate back to explosion of space-time: 13.8 billion years ago
- All universe in same place

- Cosmic expansion (Hubble's law)
- Cosmic Microwave Background
- D, He₃ Li elemental abundances
- Galaxy evolution

Initially discovered by Penzias & Wilson Near-uniform microwave background (smooth to 1 part in 10⁴)

- Early universe was hot and fully ionized!
- Electrons absorb photons: no photons could escape
- Universe cools, electrons+protons => atoms
 - Recombination
 - Occurs at 3000 K
- We see photons from surface of last scattering
 - 4000 K redshifted to 2.72 K
 - Universe was 380,000 years old
 - $T_r = 2.725 \text{ K} \times (1 + z); z \sim 1,100$

Near-uniform microwave background (smooth to 1 part in 10⁴) But not perfect: anisotropies!

- Planck epoch: 1e-43 s; T=10³² K;
 - universe was energy
 - universe was smaller than a proton
- Universe expands as cools
- Inflation: from 10⁻³⁶ to 10⁻³² s
 - the universe expands by a factor of 10⁷⁸!
 - Quantum fluctuations expand
 - All structures from those fluctuations
- 10⁻¹² to 10⁻⁵ s: quark soup!
- 0.01 s: protons/anti-proton annihilation
 - Excess of particles (1 in 30 million)
- 10-1000 s: nucleosynthesis (H, He, plus D, He-3, Li-7)
- Photon epoch: 10 s recombination (T cools from 10⁹ K to 4000 K)
- Recombination: p+e- => neutral H
- Dark ages: recombination until the first stars
- First stars/galaxy formation: 300-400 Myr

History of Universe

1⁺Redshift

Cosmology in a single plot

Inflation: from 10⁻³⁶ to 10⁻³² s

- The universe expands by a factor of 10⁷⁸!
- All irregularities get smoothed out
- Tiny quantum fluctuations grow to become galaxy clusters

3D map of the universe: clusters and voids

First stars after dark ages

- Only H and He
- Can only form massive stars
 - From models
- 100-1000 Msun
 - Burn H quickly
- Quickly seed universe with heavier elements

- Searches for first stars:
 - low "metallicity" stars in Milky Way
 - Very bright stars in early universe

- Cosmic Expansion/Hubble's Law
- Cosmic Microwave Background
- Abundances of light elements
- Evolution of galaxy structures

- Cosmic
 Expansion/Hubble's Law
- Cosmic Microwave Background
- Abundances of light elements
- Evolution of galaxy structures

- Cosmic
 Expansion/Hubble's Law
- Cosmic Microwave Background
- Abundances of light elements
- Evolution of galaxy structures

- Cosmic
 Expansion/Hubble's Law
- Cosmic Microwave Background
- Abundances of light elements
- Evolution of galaxy structures

- Cosmic Expansion/Hubble's Law
- Cosmic Microwave Background
- Abundances of light elements
- Evolution of galaxy structures

Cosmological Future: the fate of the universe?

Is there enough mass to overcome expansion?

- Universe is accelerating
- Can gravity (long-distance) overcome the acceleration?

Is there enough mass to overcome expansion?

- Universe is accelerating
- Can gravity (long-distance) overcome the acceleration?

How do we measure mass?

- Starlight (mass in stars, gas)
- Galactic rotation curves
- Gravitational lensing

Type 1a supernova as standard candles

- White dwarf explosions
- Over 1.4 Msun (Chandrasaekher mass)
- Always same luminosity (after corrections)

Type 1a Supernova: expansion of universe is accelerating!

Type 1a Supernova: expansion of universe is accelerating!

Einstein's "cosmological constant"

Dark (vacuum) energy

 Some vacuum energy leads to the expansion of the universe accelerating!

Current model for universe: "Lambda CDM"

- Lambda: acceleration of universe (dark energy)
- CDM: cold dark matter

Big Rip

Big Rip (Big Chill/Heat Death): the far-future of the universe

If expansion continues to accelerate

-13.8 billion years: Big Bang -5 billion years: Sun formed 2 billion years: people better leave Earth 5 billion years: sun evolves off main sequence 4-8 billion years: Andromeda Galaxy, Milky Way merge 100-1,000 billion years: Local Group galaxies merge 150 billion years: galaxies beyond local subcluster will pass beyond cosmological horizon (no causal interactions) 800 billion years: stars burn out, little star formation; luminosities diminish 2 trillion years: galaxies outside local supercluster not detectable 1-100 trillion years: star formation ends 1e20 years: galaxies ripped apart; stars flung out or eaten by black holes 1e50 years: protons decay, normal matter no longer exists 1e70 years: black holes evaporate 1e100 years: supermassive black holes evaporate 1e1000 years to eternity: dark era, heat death