Our solar system: the giant planets and their moons

First: finish terrestrial planets

terrestrial planets: small rocky worlds with thin atmospheres

giant planets: four huge gas giants, containing most of the mass of the Solar System

many very small ice/rock balls

LLM policy for homework 4, project

- Use LLMs (like ChatGPT) however you would like!
 - Acknowledge where you use it!
 - (obviously that acknowledgement is specific to this class; follow the syllabus for other courses and be smart about using ChatGPT – it can be obvious)
- The work you turn in must be your own
 - Points may be deducted when answers sound too much like ChatGPT.
- I think that LLMs won't help too much with the project
 - Editing/structure help
- Homework 4: added a hard question because students did so well previously
 - ChatGPT effect!

terrestrial planets: small rocky worlds with thin atmospheres

giant planets: four huge gas giants, containing most of the mass of the Solar System

many very small ice/rock balls

Earth Jupiter Neptune Eris Saturn Uranus Pluto Mimas . Puck Proteus Dysnomia) Miranda Charon Moon Enceladus lo Tethys Ariel Triton 68 Dione Europa Umbriel 8 Nereid Rhea Titania Oberon Ganymede Titan ø Hyperion lapetus Callisto * Phoebe Earth

All the planets (but not Pluto) orbit in the same direction and in the same plane: the ecliptic (to within 60).

The terrestrial planets – rocky worlds

The moon and Mercury

Properties of Earth, Venus, and Mars

Property	Earth	Venus	Mars
Semimajor axis (AU)	1.00	0.72	1.52
Period (year)	1.00	0.61	1.88
Mass (Earth = 1)	1.00	0.82	0.11
Diameter (km)	12,756	12,102	6,790
Density (g/cm ³)	5.5	5.3	3.9
Surface gravity (Earth = 1)	1.00	0.91	0.38
Escape velocity (km/s)	11.2	10.4	5.0
Rotation period (hours or days)	23.9 h	243 d	24.6 h
Surface area (Earth = 1)	1.00	0.90	0.28
Atmospheric pressure (bar)	1.00	90	0.007

Venus Thick atmosphere

Only a few landers (all Soviet Union)

Venus has hardly any impact craters; the surface density of craters indicates most of the surface is only 600 million years old; but craters do not appear to be eroding. Where are all the older craters?

Perhaps Venus undergoes periodic catastrophic resurfacing. The last such event would have taken place about 600 million years ago.

The volcano Sif Mons. is about 2 km high and nearly 300 km across. There appear to be recent lava flows at the front of the image: these flows are about 120 km long, which suggests that these lavas were also very fluid.

Atmospheric Composition of Earth, Venus, and Mars

Gas	Earth	Venus	Mars
Carbon dioxide (CO ₂)	0.03%	96%	95.3%
Nitrogen (N ₂)	78.1%	3.5%	2.7%
Argon (Ar)	0.93%	0.006%	1.6%
Oxygen (O ₂)	21.0%	0.003%	0.15%
Neon (Ne)	0.002%	0.001%	0.0003%

Mars rock from Antarctica!

Water?

HISTORY OF WATER ON MARS

Billion years ago

4.0

2.0

Marsquakes!

Basic Properties of the Jovian Planets

Planet	Distance (AU)	Period (years)	Diameter (km)	Mass (Earth = 1)	Density (g/cm³)	Rotation (hours)
Jupiter	5.2	11.9	142,800	318	1.3	9.9
Saturn	9.5	29.5	120,540	95	0.7	10.7
Uranus	19.2	84.1	51,200	14	1.3	17.2
Neptune	30.0	164.8	49,500	17	1.6	16.1

Ice giants are much smaller: started with similar sized core, but could not accrete enough material

Gas giants

Jupiter, Saturn Much more massive Abundances similar to sun

Ice Giants

Uranus, Neptune Much less massive Similar cores as gas giants

Gas giants Jupiter: energy from contraction (2 cm/yr)

Ice Giants Cold

Saturn: energy from differentiation (heavier elements sink)

Missions to the Giant Planets

Planet	Spacecraft ^[1]	Encounter Date	Туре	
Jupiter	Pioneer 10	December 1973	Flyby	
	Pioneer 11	December 1974	Flyby	
	Voyager 1	March 1979	Flyby	
	Voyager 2	July 1979	Flyby	
	Ulysses	February 1992	Flyby during gravity assist	
	Galileo	December 1995	Orbiter and probe	
	Cassini	December 2002	Flyby	
	New Horizons	February 2007	Flyby during gravity assist	
	Juno	July 2016	Orbiter	
Saturn	Pioneer 11	September 1979	Flyby	
	Voyager 1	November 1980	Flyby	
	Voyager 2	August 1981	Flyby	
	Cassini	July 2004 (Saturn orbit injection 2000)	Orbiter	

Bands of clouds

Great Red Spot: high-pressure storm

Red spot is shrinking!

Bands rotate at different speeds (like weather on earth)

Jovian aurora (like Earth: Northern lights)

Saturn (and its rings)

Saturn's aurora

Rings: water ice a few m across remnants of a moon Thousands of km across; ~10 m thick! <100 million years old

E ring: thousands of m thick Water from geysers on the moon Enceladus

Uranus

 Outer Atmosphere, the upper cloud layer

 Atmosphere
(hydrogen, helium, methane gases)

- Mantle (water, ammonia, methane ices)

– Core (silicate/Fe-Ni rock)

Tilted by 90 degrees! -past collision

NASA, ESA, and L. Sromovsky (University of Wisconsin)

Neptune

٠

.

Sept. 18, 2015

May 16, 2016

Oct. 3, 2016

Oct. 6, 2017

Clouds: scattering prevents detections of structure

Summary – number of moons

Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Number of moons	0	0	1	2	79	62	27	14

Dwarf planet	Ceres	Pluto	Haumea	Makemake	Eris
Number of moons	0	5	2	1	1

Order [note 3] 🗢	Label [note 4] 🗢	Name 🗢	Pronunciation	Image	Abs. magn. ◆	Diameter (km) ^[note 5] ◆	Mass (×10 ¹⁶ ≑ kg)	Semi-major axis	Orbital period (d) ^{[46][note 6]}	Inclination (°) ^[46] ◆	Eccentr. [41]	Discovery year ^[23] ◆	Discoverer ^[23] ♦	Group [note 7] ◆
1	XVI	Metis	/ <u>mi:trs</u> /	٠	10.5	60 × 40 × 34	≈3.6	128 852	+7h 10m 16s	2.226	0.0077	1979	Synnott (Voyager 1)	Inner
2	xv	Adrastea	/ <u>əˈdræstiə</u> /	•	12.0	20×16×14	≈0.2	129 000	+7h 15m 21s	2.217	0.0063	1979	Jewitt (Voyager 2)	Inner
3	v	Amalthea	/ <u>əˈmælθiə/</u> ^[47]	6	7.1	250×146× 128 (167 ±4.0)	208	181 366	+12h 01m 46s	2.565	0.0075	1892	Barnard	Inner
4	XIV	Thebe	/ <u>θitbi</u> /	2	9.0	116×98×84	≈43	222 452	+16h 16m 02s	2.909	0.0180	1979	Synnott (Voyager 1)	Inner
5	1	lo≜	/100/		-1.7	3 660.0 ×3 637.4 ×3 630.6	8 931 900	421 700	+1.7691	0.050 ^[48]	0.0041	1610	Galilei	Galilean
6	П	Europa	/jʊəˈroʊpə/ ^[49]		-1.4	3 121.6	4 800 000	671 034	+3.5512	0.471 ^[48]	0.0094	1610	Galilei	Galilean
7	ш	Ganymede	/ <u>gænɪmiːd</u> / ^{[50][51]}		-2.1	5 262.4	14 819 000	1 070 412	+7.1546	0.204 ^[48]	0.0011	1610	Galilei	Galilean
8	IV	Callisto	/ <u>kəˈlɪstoʊ</u> /		-1.2	4 820.6	10 759 000	1 882 709	+16.689	0.205 ^[48]	0.0074	1610	Galilei	Galilean
9	XVIII	Themisto†	/ <u>0rˈmɪstoʊ</u> /	iii	13.5	8	0.069	7 393 216	+129.87	45.762	0.2115	1975/2000	Kowal & Roemer/ Sheppard et al.	Themisto
10	XIII	Leda†	/ <u>li:də</u> /	Leda \/ //	12.8	16	0.6	11 187 781	+240.82	27.562	0.1673	1974	Kowal	Himalia
11	VI	Himalia†	/harˈmeɪliə/		8.3	170	670	11 451 971	+250.23	30.486	0.1513	1904	Perrine	Himalia
12	LXXI	S/2018 J 1†			15.9	2	0.0015	11 453 004	+250.40	30.606	0.0944	2018	Sheppard et al.	Himalia

Relative Masses of Jovian Satellites

Galilean satellites of Jupiter

Io: a volcanic moon heated by tides

Io Surface Changes

Galileo 1999

New Horizons 2007

Io: cloud around Io because of Jupiter's magnetic field

Europa: smallest of inner moons; ice world

Ganymede and Callisto

Moons of Saturn

Moons of Saturn

Moons of Saturn

Titan: the main moon of Saturn

titan

Fully differentiated dense-ocean model Drawn to scale

Hydrous silicate core Atmosphere Lower atmosphere Thick tholin haze Upper atmosphere

Punga Mare

Clouds

Kraken Mare

Ligeia Mare

Lakes

NASA/Dragonfly Mission: drone to Titan!

Enceladus: ice moon

Northern Hemisphere Orthographic map projection at 100 meters/pixel

Southern Hemisphere Orthographic map projection at 100 meters/pixel

Global 3-Color Map of Enceladus (IR3-GRN-UV3)

April 2014

Cartographic control and digital mosaic construction by Dr. Paul Schenk (LPI, Houston) Cassini ISS images acquired 2004-2014

1 kilometer (0.6 mile)

Global Ocean on Saturn's Moon ENCELADUS

Enceladus: geysers!

Daphnis: A shepherd moon

Mimas: the death star moon

Moons of Uranus

Miranda: an ice world?

Umbriel: weird ring at the top

Sycorax: example of how the moons are found

Moons of Neptune

Triton: going in the wrong direction! captured Kuiper Belt Object?

Neptune Satellites and Ring Arcs Hubble Space Telescope • WFC3/UVIS

