Exoplanets: Formation

AB Aur disk, as seen from ESO VLT/SPHERE

Review session

- Tonight, this room, 7pm-8:30pm
- Free Q&A, no slides or presentation planned

Exoplanet Populations

Mass and Radius of Kepler-138 Planets

Transmission studies of atmospheres

- Earth: 6400 km radius, ~10-100 km atmosphere
- (6500/6400)^2=1.03
- Sun's radius: 7e5 km
- Depth= $(Rp/R^*)^2$
 - 8.7e-5 for atmosphere
 - 8.4e-5 for planet
 - Tiny signal!

•

•

Atmospheric escape: why did Mars lose its atmosphere?

Properties of Earth, Venus, and Mars

Property	Earth	Venus	Mars
Semimajor axis (AU)	1.00	0.72	1.52
Period (year)	1.00	0.61	1.88
Mass (Earth = 1)	1.00	0.82	0.11
Diameter (km)	12,756	12,102	6,790
Density (g/cm ³)	5.5	5.3	3.9
Surface gravity (Earth = 1)	1.00	0.91	0.38
Escape velocity (km/s)	11.2	10.4	5.0
Rotation period (hours or days)	23.9 h	243 d	24.6 h
Surface area (Earth = 1)	1.00	0.90	0.28
Atmospheric pressure (bar)	1.00	90	0.007

Mars: lower escape velocity, weak magnetic field

- Mars lost magnetic field!
 - Generated by radioactivity in core
 - Less mass => less radioactivity
 - Volcanos, earthquakes
 - Magnetic field protects atmosphere
- Escape velocity of Earth: 11 km/s
- Escape velocity of Mars: 5 km/s

HISTORY OF WATER ON MARS

Billion years ago

2.0

3.5

1.0

Atmospheric escape detected in planet distributions

- Measured for hot Jupiters!
 - not enough escape because of high escape velocity
 - provides test for models)

Atmospheric escape detected in planet distributions

Spin-orbit misalignment

- Most planets seem co-planar, also with stellar rotation
- Some hot Jupiters are misaligned
 - Scattered during unstable interactions with other planets

Our astrophysical origins

Milky Way Galaxy (if we could see it from "above")

Protoplanetary disks

Cosmic Microwave Background (early universe)

Molecular Clouds

Planets, atmospheres, and life!

What can we learn from our own solar system?

terrestrial planets: small rocky worlds with thin atmospheres giant planets: four huge gas giants, containing most of the mass of the Solar System

many very small ice/rock balls

Debris from the solar system: asteroids, comets, Kuiper Belt Objects

All the planets (but not Pluto) orbit in the same direction and in the same plane: the ecliptic (to within 60).

Collisions were common!

0

Moon formation!

Abundances: comets, asteroids

- Asteroids: leftover planetessimals, mostly between Mars & Jupiter
 - Carbon-rich
 - Metallic
 - Silicaceous (rocky)
 - No ice, formed inside snow line
- Comets: ices, formed beyond the snow line
 - Comets may have delivered water to earth!
- Kuiper Belt Objects: ices beyond snow line

Rosetta Mission: landed on Comet 67P (!!!)

Comets: possible source for Earth's water!

How did they get there?

Planetessimals that never formed into planets

Scattered by giant planets!

How did they get here?

Dynamical interactions in Oort cloud:

Unstable, sometimes one heads to inner solar system

Asteroid composition

- Sample return!
- Antarctica meteors
 - also some Mars rocks!
- Spectroscopy from ground/space

Release 051101-2 ISAS/JAXA

Pluto from New Horizons Mission

Nitrogen ice Flows like glaciers

Ice mountains, 3 km high

Haze! Pluto has an atmosphere Likely from solar radiation, will disappear when Pluto is farther from the Sun

New Horizons flyby of Kuiper Belt Object MU-69 (36 km across)

Age of solar system: 4.567 billion years

Parent	Daughter	Half-Life (billions of years)
amarium-147	Neodymium-143	106
ubidium-87	Strontium-87	48.8
horium-232	Lead-208	14.0
ranium-238	Lead-206	4.47
otassium-40	Argon-40	1.31

Formation near supernova?

- Meteoritic abundance: elevated Mg-26, a decay product of Al-26
- Core-collapse supernova produce Al-26
- Solar system: likely formed in high-mass star-forming region, affected by supernova!

Chondrites

- Spherical silicate+metal grains, micronsmm in size
- 85% of all meteorites
- Requires temperatures of ~1000-1500 K
- Heating event over very short (10,000 year) timescale

Galilean satellites of Jupiter Jupiter had its own disk!

Moons of Saturn: Saturn had a disk

Mimas
 Enceladus

Tethys

Dione
Rhea
Titan
Iapetus
all other moons

Credit: Bill Saxton, NRAO/AUU/NSF

JWST image of protostar L1527

Evolution from clouds to planetary systems

Multi-color blackbody disk emission

Slide from C. Dullemond

Multi-color blackbody disk emission

- Warm dust: emits at short wavelength
- Cold dust: emits at long wavelengths
 - mm observations

λ

Disk lifetime: Find members of a region of forming stars

Measure how many have disks

Disk lifetime: fraction of members of a cluster with disks versus cluster age

Typical disk lifetime: 3 Myr with a lot of scatter

The long road from dust to planets

Basic disk physics: gas and dust

• Gas and dust flow through the disk (radially and vertically)

• Physics of instabilities

- Positive feedback: a small change (epsilon) continues to grow => instability!
- Negative feedback: a small change is balanced out and does not grow => stable

• Complicated combination of microphysics and chemistry

Dust drift

- Disks are Keplerian rotators
- Gas pressure: gas is sub-Keplerian
- Dust feels headwind, drifts inward (to pressure maxima)
 - Loses velocity => lower angular momentum => moves inward

• Timescales short: how do disks survive?

Disk simulations and planet formation

- Planet cores initially form by the streaming instability
 - Interaction between dust and gas leads to increase in density, gravitational collapse to form a core

- Planets continue to gain mass by pebble accretion
 - Dust grains slow and drift to planet core when they pass nearby

Streaming Instability

Instability that leads to growth of large rocky/metallic cores

Collects dust to increase density enough to gravitationally collapse

Pebble Accretion

Secondary growth

ightarrow

- Core attracts over a gravitational radius
- Friction increases the radius

Problem: most microphysics not observable

- Non-ideal MHD physics occurs on small scales
 - Magnetic fields, turbulence: usually not detectable
- Grain growth is for labs/computers
 - Observationally parameterized with a single number
- Optical depth: often see surfaces and not inside
- Chemistry: always uncertain

How would a forming planet affect a disk? Transitional Disks: Gap opening(@g.planeto?1)

Atacama Large Millimeter Array (ALMA)

Sub-mm **interferometer**, 5000m high plateau in Chile

Interferometer

Combine light from different telescopes

Spatial resolution: corresponds to distance between telescopes

Atacama Large Millimeter Array (ALMA)

Resolution: wavelength/diameter 1 micron/1 mm = 1000 10 m near-IR telescope => 10 km radio telescope 0.05 arcsec => 7 AU for nearest star-forming regions

Sub-mm **interferometer**, 5000m high plateau in Chile

The ALMA revolution: Dust structures in protoplanetary disks

Signs of planets?

Spirals in young protoplanetary disks

Dust traps with ALMA

(e.g., van der Marel+2015; Pinilla+2015)

ALMA Image of HL Tau disk

Young disk surrounded by an envelope

Expected to be smooth

ALMA Image of TW Hya (old disk) (Andrews+2016)

DSHARP, Andrews+2018: brightness-selected

Are rings evidence for planets that already exist?

Or are they created by other physics?

Locations where planet cores may grow?

Chicken/egg problem

Andrews (2020, ARAA)
What if the gaps are carved by young planets?

(Lodato et al. 2019, from Long et al. 2018)

gap-inferred planet population

Mass of planet inferred from size and location of the gap

Zhang+2018 (DSHARP); Bae+2018 (archival)

Planet(s) in a disk around the star PDS 70! (Keppler et al. 2018)

Proto-lunar disks around PDS 70bc?

MUSE/H-alpha accretion, Haffert+2019 See also, eg., Bowler+2013; Zhou, Herczeg, et al. 2014; Wagner+2019

Proto-lunar disks around PDS 70bc?

 $\Delta \theta_{RA}^{''}$

Chemistry of one disk! (MAPS: Oberg et al. 2021)

Disks in scattered light

VLT/SPHERE: Garufi+2019; Boccalletti+2019

Weird disk around the binary of HD 98800N binary in a quadruple system, disk+binary are not coplanar! (could some planetary systems in binary star systems be very, very weird?)

JWST: Direct imaging searches for exoplanets

Dong+: MWC 758 spirals excited by a planet?

Ren, Dong, et al. 2020: orbital motion of spirals consistent with a planet

Where is the planet?

JWST will find it (or not): 100 x more sensitive than ground-based observations

Structures: planets or physics (of planet formation)?

Andrews (2020, ARAA)

How to affect the abundances of a planet

 Some planets will accrete more mass from the gas phase

• Others will have more icy dust grains

 The molecules in gas or ice depends on temperature (snow line)

Comets: possible source for Earth's water!

Planet migration

- Planets formation location may differ from final location
- Interactions with disk: can move inward or outward

