Exoplanets: Characterization

Jupiter, as seen from the JUNO mission

Methods to detect exoplanets

- Radial velocity
 - (motion of star in our line-of-sight)
- Transit photometry
- Direct imaging
- Astrometry (motion of star on sky)
- Microlensing
- Transit Timing Variation

-20

-30

-40

-20

-10

0

Hours from transit minimum

20

10

30

40

- Most common systems have Super-Earths
- Cold Jupiters (like solar system): not too unusual
- Hot Jupiters: rare but easy to detect

Exoplanets are common!

Methods to characterize exoplanets (atmosphere+composition)

- **Density:** transit+radial velocity
- Atmospheres:
 - Primary or secondary transit
 - Direct imaging
 - Both cases: spectra or multi-band photometry
- Orbital line variations: challenging
 - beyond today's discussion
- Astrometry: very hard, unused to date
- Transit timing variations and Microlensing: useless

Exoplanet Populations

Planet size (transit) and mass (radial velocity): density/composition

Mass and Radius of Kepler-138 Planets

Exoplanet Radius vs. Distance from Star

Distance from Star

Are terrestrial planets habitable?

Planet temperature: stellar irradiation, atmosphere

Star with mass $\frac{1}{10}$ M_{Sun}

Star with mass $\frac{1}{2} M_{Sun}$

Solar System

The greenhouse effect

α: albedo = reflectance Ice (and clouds) reflects energy = cooler planet

Blackbody emission: hotter objects emit at higher energies (=shorter wavelengths)

Peak of blackbody:

- Molecules in Earth's atmosphere block detection of same molecules from exoplanet
 - "opposite" of greenhouse effect

• Often need space observations!

- Planets are cool
- Need infrared telescopes!

Terrestrial exoplanets in habitable zones

Relative scale of Earth

Star and orbits shown in scale Planets enlarged approximately 7,600x

Current Potentially Habitable Exoplanets

Ranked in Order of Similarity to Earth

Atmosphere detection methods

Eclipse:

Removing "star" from "star plus planet" flux reveals the planet's thermal emission or albedo:

Transmission:

Planet's apparent size at different wavelengths reveals atmospheric opacity and composition.

Direct Imaging:

Spatially resolving planet from star allows measurement of thermal emission or albedo.

Phase Curves:

Total system light throughout an orbit constrains atmospheric circulation and/or composition.

Exoplanet atmospheres!

Transmission studies of atmospheres

Earth: 6400 km radius, ~10-100 km atmosphere

Tiny signal!

Atmosphere detection methods

Different wavelengths probe different layers in atmosphere

 10^{-}

 10^{-}

Complex atmospheric models: testable predictions for different abundances (C/O ratio) and atmospheric properties

Atmospheres and types of planets

terrestrial planets: small rocky worlds with thin atmospheres

giant planets: four huge gas giants, containing most of the mass of the Solar System

many very small ice/rock balls

Gas giants Jupiter: energy from

🕘 Earth

Saturn: energy from differentiation (heavier elements sink)

contraction (2 cm/yr)

Ice Giants Cold Large cores/small envelopes

Core (rock, ice)

Saturn (and its rings)

Rings: water ice a few m across remnants of a moon Thousands of km across; ~10 m thick! <100 million years old

Shepherd moons

The Ice Giants Uranus Neptune

HOT GAS GIANT EXOPLANET WASP-39 b TRANSIT LIGHT CURVE

NIRSpec | Bright Object Time-Series Spectroscopy

HOT GAS GIANT EXOPLANET WASP-39 b ATMOSPHERE COMPOSITION

NIRSpec | Bright Object Time-Series Spectroscopy

microns

HOT GAS GIANT EXOPLANET WASP-39 b ATMOSPHERE COMPOSITION

EXOPLANET VHS 1256 b

NIRSpec and MIRI | IFU Medium-Resolution Spectroscopy

Range of spectra for directly imaged planets

Tomorrow: formation of exoplanets

Terrestrial worlds

Venus: thick atmosphere Earth: Mars: Very nice! Very little atmosphere

Properties of Earth, Venus, and Mars

Property	Earth	Venus	Mars
Semimajor axis (AU)	1.00	0.72	1.52
Period (year)	1.00	0.61	1.88
Mass (Earth = 1)	1.00	0.82	0.11
Diameter (km)	12,756	12,102	6,790
Density (g/cm ³)	5.5	5.3	3.9
Surface gravity (Earth = 1)	1.00	0.91	0.38
Escape velocity (km/s)	11.2	10.4	5.0
Rotation period (hours or days)	23.9 h	243 d	24.6 h
Surface area (Earth = 1)	1.00	0.90	0.28
Atmospheric pressure (bar)	1.00	90	0.007

With enough S/N, we can detect the differences between Venus, Earth, and Mars-like exoplanets!

(but need high S/N in infrared)

HISTORY OF WATER ON MARS

Billion years ago

2.0

3.5

1.0

GanymedeTitanMercuryCallisto5262 km5150 km4880 km4806 km

NASA/Dragonfly Titan Mission (artist image, planned for late 2020s)

Ice worlds of Jupiter

Ganymede

Callisto

Enceladus: ice moon of Saturn

Enceladus: geysers!

Titan: the main moon of Saturn

Ice-six (tetragonal crystals)

Liquid water ocean

Normal ice (1_h)

Surface

Fully differentiated dense-ocean model Drawn to scale

Hydrous silicate core Atmosphere Lower atmosphere Thick tholin haze Upper atmosphere

ROCKY EXOPLANET LHS 475 b TRANSMISSION SPECTRUM

NIRSpec | Bright Object Time-Series Spectroscopy

Exoplanet atmospheres!

EXOPLANET GJ 486 b TRANSMISSION SPECTRUM

NIRSpec Bright Object Time Series Spectroscopy

ROCKY EXOPLANET TRAPPIST-1 C EMISSION SPECTRA

Futures of atmosphere studies

- JWST: mid-IR telescope, 10-20 years of discovery
 - \$10 billion USD, led by NASA+Canada/ESA
 - Most powerful astronomy facility ever built
- ARIEL (ESA)

• ELTs (Extremely Large Telescopes): next generation...

Next class: formation of exoplanets

- Where and how do exoplanets form?
 Protoplanetar disks!
- How do different formation scenarios affect planet chemistry and habitability?

Accretion of gas and solids and C/O variability

Next class: planet formation

Accretion of gas and solids and C/O variability