Exoplanets: Discovery

Jupiter, as seen from the JUNO mission

Mass - Period Distribution

Period [days]

Observational astronomy: imaging and spectroscopy

- Imaging (usually with filters): is an object red or blue?
- Spectroscopy: what elements/molecules are present
	- (and ionization/energy levels)

Electromagnetic spectrum (energy of light)

Wavelength in meters (m)

Blackbody emission: hotter things emit at higher energies (=shorter wavelengths)

Peak of blackbody:

$$
\lambda_{\text{max}} \cdot T~=~0.288~\text{cm}\cdot\text{K}
$$

Blackbody emission: hotter objects emit at higher energies (=shorter wavelengths)

Elements and molecules have transitions between different electron energy levels

Spectral Type (temperature) from dark absorption lines

Spectral Type (temperature) from dark absorption lines

Techniques for discovering exoplanets

- **Radial velocity:** spectroscopy
- **Transits:** imaging (single-band)
- **Direct imaging:** imaging at high contrast
	- Coronagraph; ground+adaptive optics or space
- **Astrometry:** imaging with high precision
- **Microlensing:** imaging

Can combine methods: mass+radius

Characterization: multi-band photometry or spectroscopy

Mass - Period Distribution

Period [days]

Radial Velocity Method

The star and planet orbit their common center of mass.

Mass - Period Distribution

Period [days]

Radial Velocity

 $v_{\rm obs} = 28.4 \frac{M_P \sin i}{P_{\rm orb}^{1/3} M_*^{2/3}}$

\bullet M_p in Jupiter masses

- P_{orb} in years
- M_{*} in solar masses
- \cdot V_{obs} in m/s

Radial velocity: centroid absorption lines

Centroid an absorption line

- Solar radius: 6.96e10 cm
- Solar rotation period: 27 days
- Velocity: ~2 km/s
- Jupiter at 0.1 AU: 90 m/s
- Jupiter at 1 AU: 28.4 m/s
- Jupiter at 5 AU: 13 m/s
- Earth at 0.1 AU: 0.3 m/s
- Earth at 1 AU: 0.09 m/s

- M_p in Jupiter masses
- $P_{\rm orb}$ in years
- M_* in solar masses

To detect Earth: $0.09/2000$: centroid to 1 part in 10⁵ (hard – at current limits!)

• Jupiters: need time to build up signal

Centroid an absorption line

To detect Earth: 9 cm/s

RV observations from first detections: 10 m/s

Best current instrument (VLT/ESPRESSO): 3 cm/s

- M_p in Jupiter masses \bullet
- $P_{\rm orb}$ in years \bullet
- M_* in solar masses \bullet

ESPRESSO confirmation of Prox Cen b (nearest exoplanet)

Mass - Period Distribution

01 Aug 2023 exoplanetarchive.ipac.caltech.edu

Period [days]

Time

Secondary eclipse

Observe exoplanet's thermal radiation disappear and reappear

Primary eclipse

Exoplanet's size relative to star See star's radiation transmitted through the planet's atmosphere

First transiting planet around the star HD209458

Kepler Observatory: thousands of planets

Example of a four (or more) planet system (two shown here)

TESS and PLATO transit missions

TESS (NASA)

- Launched in 2018
- All-sky survey of brightest stars
	- 30 days at each position
	- Close-in planets, not 1 AU planets
- 1367 possible planets
	- 329 confirmed

Earth 2.0 (China): Uncertain

PLATO (ESA)

- 2026 launch date
- Stare at one larger region
	- Discover terrestrial planets in habitable zones

Bias of transits

What kinds of planets are easiest to detect?

• Close to star

Probability of transit: $R_{star}/star$ -planet distance

• Large radius

 $R_p = R_{\star} \sqrt{\text{Depth}}$

Direct Imaging:

requires coronagraph to block out a very bright star

- (similar to an eclipse)
	- blocking bright starlight is not perfect

Prospects for direct imaging of the solar system

Prospects for direct imaging of the solar system

Prospects for direct imaging young solar systems!

Direct imaging can detect light from young solar systems

Prospects for direct imaging young solar systems!

Proto-lunar disks in a planet-forming disk

What about in reflection?

Albedo (reflectivity): 0.3

Earth radius: 6.4e8 cm

Sun-Earth distance: 1.5e13 cm

Fraction of Sunlight reflected by Earth: about 2e-9

Best contrast at 0.7 arcsec (1 AU for nearest star): 5e-6

For next generation of telescopes

Biases of direct imaging

- Massive planets
- Large distance from their host star
- Young

[this is very hard]

Astrometry

- Motion of star on plane of the sky
- d1/d2=m/M

O

Claim in 1963!

Astrometric Study of Barnard's Star. PETER VAN DE KAMP, Sproul Observatory.—A total of 2413 plates, taken with the Sproul 24-inch refractor. anging in epoch from 1916 to 1962 are available or analysis. About three-fourths of the material ras measured twice.

An intercomparison of the 12 measurers and their imes of measurements revealed a reasonable contancy of the Gaertner measuring machine over two lecades and a generally satisfactory small degree of ersonal equation.

All measurements were corrected for the latest ralues of parallax, proper motion, acceleration, and inown color and magnitude effects. The yearly nean residuals, of average weight 64 (96 plates) learly exhibit a long-period systematic run, mainly n right ascension, but also in declination, which dmits of no simpler explanation than that of a perturbation, caused by an unseen companion of 3arnard's star.

Astrometry

Earth detection

- $d1/d2 = m/M$
- d2=1.5e13 cm = 1 AU
- m/M=d1=3e-6 AU
- at 10 parsecs: 0.3 microarcseconds

Jupiter detection

- d1/d2=m/M
- \cdot d2 = 5 AU
- $m/M = 1e-3 = 5e-3 AU$
- at 10 parsecs: 500 microarcseconds

Gaia: an astrometry space mission

- Measure star centroids to 24 microarcseconds
	- Sun-Jupiter at 10 AU: 500 microarcseconds
	- Size of human hair at 1000 km!
	- Expect results in ~2-3 years

Extrasolar planet detected by gravitational microlensing

Microlensing discoveries of exoplanets

- Unusual geometry need a lot of stars (stare at galactic center)
- Planet mass: equivalent to duration of deviation
- Limited follow-up
- Only current technique to measure frequency of true Earth analogs

Primary detection methods

- Radial Velocity
- Transit spectroscopy
- Direct Imaging
- (astrometry: 2-3 years away)
- Microlensing (statistics only)

Can combine methods to make them even more powerful!

Exoplanets are common!

- Most common systems have Super-Earths
- Cold Jupiters (like solar system): not too unusual
- Hot Jupiters: rare but easy to detect

Planetary Systems by Number of Known Planets

As of December 14, 2017

Gap in planet distribution (Fulton Gap)

Some exoplanet extremes

- Closest: Prox Cen b (closest star!)
- Least massive: PSR B1257+12b (0.00067 M earth)
- Hottest: KELT 9b, 4050 K
- Shortest period: SWIFT J1756.9-2508, 49 minutes!
- Smallest orbit: WD 1202-014, 0.0021 AU
- Most eccentric: HD 20782, 0.956
- Kepler 47AB and Kepler 16AB: examples of around binariespplaners
- Lowest metallicity: K2-344b, 10 times less than solar system

Exoplanet Populations

Exoplanet Populations

Next class: exoplanet characterization characterization
and atmospheres

Radial Velocity

Transit

Imaging

Kepler

Microlensing

Pulsar Timing

